Пятница, 17 сентября 2021   Подписка на обновления
Пятница, 17 сентября 2021   Подписка на обновления
Популярно
Задания на вероятность в ОГЭ

Задания на вероятность в ОГЭ


Чтобы понять — что такое вероятность и записать основные формулы, которые нам понадобятся, советуем прочить статью про вероятность. Мы же с вами рассмотрим решение некоторых задач. В ОГЭ по математике они идут под номером 10 в каждом варианте.

Задача 1

На экзамене 40 билетов, Олег не выучил 12 из них. Найдите вероятность того, что ему попадется выученный билет.

Источник: тексты задач взяты из сборника заданий по математике ОГЭ 2021 под ред Ященко.

Решение.

Используем формулу нахождения вероятностей:

P=\frac{m}{n},

где m — число случаев, вероятность выпадения которых надо определить;

n — общее число случаев.

В нашей задаче m=40-12=28 — это число выученных билетов, вероятность попадания которых на экзамене и нужно было определить.

n=40.

Тогда P=\frac{28}{40}=\frac{7}{10}=0,7.

Ответ: 0,7

Задача 2

В среднем из 150 садовых насосов, поступивших в продажу, 6 подтекает. Найдите вероятность того, что случайно выбранный для контроля насос подтекает.

Решение. Используем ту же формулу, что и в задаче 1. В нашей задаче m=6, n=150.

Тогда P=\frac{6}{150}=0,04.

Ответ: 0,04.

Задача 3

Перед началом первого тура чемпионата по шашкам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 71 спортсмен, среди которых 22 спортсмена из России, в том числе Т. Найдите вероятность того, что в первом туре Т. будет играть с каким-либо спортсменом из России.

Решение:

Для нашего спортсмена благоприятных исходов будет 21: 22-1=21, так как спортсмен Т. не может играть сам с собою. А вот с любым другим участником из России он сыграть может. Тогда число всех событий 71-1=70, потому что спортсменов без Т. всего 70.

Подставляем полученные значения в формулу нахождения вероятности и получаем:

P=\frac{m}{n}=\frac{21}{70}=0,3.

Ответ: 0,3.

Решим аналогичную задачу.

Задача 4

Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 51 спортсмен, среди которых 14 спортсменов из России, в том числе Д. Найдите вероятность того, что в первом туре Д. будет играть с каким-либо спортсменом не из России.

чемпионата по теннису участников разбивают на игровые пары

Решение:

Формула для определения вероятностей та же. Определим числитель и знаменатель в ней. Так как Д. — из России должен играть со спортсменом не из России — то спортсменов не из России 51-14=37. Всего спортсменов, с которыми может играть Д. 50, так как Д. не может играть с собой: 51-1=50.

Тогда получим: P=\frac{m}{n}=\frac{37}{50}=\frac{74}{100}=0,74

Ответ: 0,74.

Задача 5

На экзамене 60 билетов, Николай не выучил 9 из них. Найдите вероятность того, что ему попадется выученный билет.

Решение:

Выученных билетов 60-9=51. Находим вероятность того, что Николаю попадется выученный билет.

P=\frac{m}{n}=\frac{51}{60}=0,85

Ответ: 0,85.

Таким образом, основная сложность в таких задачах — это определение числа благоприятных исходов. В дальнейшем мы просто делим число благоприятных исходов на число всех исходов и находим десятичную дробь, которая и будет являться вероятностью благоприятного события.

Об авторе: Ольга Викторовна


© 2021 Темы школьной программы — математика 5-11 класс
Дизайн и поддержка: GoodwinPress.ru