Периметр трапеции часто нужно определить в задачах по геометрии. Периметр трапеции определяется также как и периметр любой другой фигуры на плоскости:
Периметр плоской фигуры – есть сумма всех сторон фигуры.
Чему равен периметр равнобедренной трапеции – то же самое – сумме всех ее сторон.
Содержание
Найти периметр трапеции в задачах ЕГЭ
В задачах ЕГЭ вы найдете периметр трапеции. Например,
Задача 1
Около окружности описана трапеция, периметр которой равен 60. Найдите длину ее средней линии.
Решение:
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы противолежащих сторон равны:
АD+CD=DC+AB=PABCD /2,
Где PABCD – периметр трапеции. В самом деле PABCD =AD+CB+DC+AB=2(DC+AB), а значит, DC+AB=PABCD /2
Средняя линия трапеции – это полусумма ее оснований, то есть MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 60/4=15 .
Ответ: 15.
Задача 2
Около окружности описана трапеция, периметр которой равен 44. Найдите длину ее средней линии.
Решение. Рассуждаем аналогично и получаем MN=(DC+AB)/2=(PABCD /2)/2=PABCD /4 = 44/4=11.
Ответ: 11.
То есть мы сами с вами вывели лайфхак для решения этой задачи:
И обратный лайфхак:
P=4l
Применим наш лайфхак 1 к решению следующей задачи?
Задача 3
Около окружности описана трапеция, периметр которой равен 30. Найдите длину ее средней линии.
Задача 4
Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 37, найдите радиус окружности.
Решение. Периметр трапеции равен: АD+DC+CB+AB=PABCD (1)
В трапецию можно вписать окружность, если суммы длин противоположных сторон равны. То есть, имеем: AD+CB=DC+AB (2)
С учетом (2) равенство (1) можно записать в виде: 2(АD+CB)=PABCD (3)
Теперь давайте посмотрим на вот такой рисунок:
Видно, что сторона AD=2R, где R – радиус окружности.
Тогда, AD+CB=2R+37, тогда равенство (3): 2(2R+37)=100.
Решаем уравнение, относительно R:
4R+74=100
4R=100-74
4R=26
R=26/4
R= 6,5
Ответ: 6,5
Задача 5
Из сборника ЕГЭ по математике профильный уровень 2020 год вариант 19 задание 6.
Около окружности описана трапеция, периметр которой равен 28. Найдите длину ее средней линии.
Решение: пользуясь лайфхаком, который мы вывели выше, вычисляем длину средней линии трепеции: делим периметр трапеции на 4.
Получаем 28:4=7
Ответ: 7.